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The chati presented in this paper has been deycribed in Ref. 1
where it appeared as an orthographic map of the ?oincare sphere. Its applica--
tion to transmission lines is believed to be new and since in this respect
important properties derive from projective geometry rather than from the re-
lation to the sphere it is proposed to call it the projective chart.

The relations of this chart to Non-Euclidean geometry and to Rela-
tivity (Ref. 2 and 3) are interesting and important for understanding its basic
properties but since these theories have a reputation of being difficult the
projective chart will be considered here as a simple modification of the Smith
chart. Fundamental properties will be stated without proof and a selection of
possible applications will be given to show the versatility of this new graph-
ical representation.

An important aid in these applications is a transparent overlay with
convergent lines and graduations called the hyperbolic protractor which can
be used to measure directly on the chart a special t ype of dista~es.

Pro.iective chart

On the Smith chart a reflection coefficient or reflectance w is rep-
presented by a point W just as any complex number is represented on the
Argand diagram. The distance OW to the origin is the magnitude r of the
reflectance and all passive loads are represented by ~oints inside the unit
circle ~. If the fine

is the VSWR corresponding

Ow cuts ~ at-points

WI= l+r
WJ =

to the reflectance w

I “aid J (Fig. 1) the ratio

(1)

.

The modification which leads to the pro.fiective chart is to represent
the reflectance w by the point ~ with the-s~e phase angle as W ‘bnt at
a distance ~ from the origin given by

i?= 2r

l+r2
(2)

ThiS makes the ratio ;I~J

If one uses, with
ation in decibels the point

equal to the square of the VSWR.

the Smith chart, a radial arm carrying a VSIJR gradu-
17 will be in front of the graduation 2X when w

is in front of the graduation x . Plotting points on tfie projective chart or
transforming back and forth to the Smith chart is therefore very simple.
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The transformation @ from W to ~ can also be obtained by projec-
ting W on a sphere with equator ~from one of its pole and then by projecting
orthogonally from the sphere on the plane of ~ (Ref. 1-2-3) This justifies the

construction shown on fig. 2 : ‘M’l and ON are perpendicular to the radius o~
and MN goes through v!. This can also be used to perform the inverse trans-
formation @ from H to W.

The circles usually drawn on the Smith chart corresponding to constant
resistance or reactance and to constant magnitude or phase of the impedance be-
come on the projective chart straight lines and ellipses as shown on figure 3 .
These could be drawn in advance and used as on the Smith chart to plot impedance
measurements taken for instance with a bridge.

Distances and angles on the projective chart

Special notions of distance and angle can be introduced on the projec-
tive chart which have useful interpretations.

Given two points A,B andthe intersections I~J of AB with ~ (fig. 4)

the quantity :

10 IOg,o (:%)
(3)

will be noted by {A13) and called the hyperbolic distance between A and B. It
will usually be expressed in decibels as In (3) but can be converted to nepers
by substituting + loge for 10 loglo.

The quantity (3) deserves the name of ~distancet! because it satisfies
the triangular inequality (which shows that straight lines are geodesics for this
particular metric) and because it is additive : if three points A,B,C are on a
straight line, in this order

—.

{AB~ + {BC~ = {AC> (4)

The hyperbolic distance between the point ~ and the center of the
chart is :

l+F

()
l+r

m’ = lolog~=2010g ~-r (5)

and can be interpreted as the VSWR expressed in decibels.

The expression (3) for the hyperbolic distance does not have to be used
in evaluating {AB> . A scale formed of diverging lines can be traced once for
all on a transparent base forming an hyperbolic protractor which is used as fol-
lows : the protractor is placed on the chart so that the sides OX, OY of the right
angle go through the points I and J (fig. b) (This is possible in many ways but
does not affect the result). The
B respectively are added if A and
marked O, subtracted otherwise.

{AB} . On figure 4 for instance

numbers read on the ra-~al lines thro;gh ~ and
B are on opposite sides of the radial line

This result divided by 2 is the distance
(AB} equals (12 +4)/2 or 8 decibels.
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The special type of angle which goes with the h~erbolic metric will
be called elliptic. The elliptic angle between the lines WE and TW is noted

by <~,%’) and can be obtained (Fig. 5) by the following construction : find
the point W (if this has not been done) then draw WE and WF produced to their
intersections E! and F! with r . The elliptic angle is equal to the ordinary
angle (OEl,OFl). A special elliptic protractor could also be designed to per-
form this evaluation directly.

Corresponding notions of distance and angle could be introduced directly
on the Smith chati: the geodesics are circles orthogonal tor ~ the angle between
two of them is represented by the true angle between their tangents at a point of
intersection and the ~?distance~l @B] between two points A and B is most conveniently
defined and evaluated by saying that it should be equal to ~~ where ~ and ~
are the images of A and B by the transformation .

Representation of linear transformers

A transformation which occurs very often because it expresses the effect
of a linear transformer on impedance, reflectance or polarization ratio is

where a,b,c,d are complex numbers
into w! .

This so called bilinear

aw+b
w!=—

CW + d

and w is the quantity which

transformation is represented

(6)

is transformed

on the smith
chart by a circular transformation i.e. one which transforms circles into circles
and is confomnd (preserves angles). It follows that hwerbolic distances are
also preserved in’the followin~ sense: if A,B are transformed into A~,BI while

rbecOmes ~’, the distance [AB] defined above is equal to the distance ~A!Bg
measured as if r’ were the unit circle

(7)

the subscript indicating with respect to what circle the ?Idistancer! is measured.

The special transformations (6) which preserve the unit circle (lossless
transformations of reflectance for instance) are represented on the projective
chart by projective transformations. They transform straight lines into straight
lines and as a consequence also leave the hyperbolic distances and elliptic angles
invariant. The first applications are based on this property.

Change of reference level. Ideal transformer

When impedances are plotted on the Smith chart to convert them into
reflectance, they must first be divided by the characteristic impedance of the
transmission line to which they will be connected. A change in this characteris-
tic impedance level usually means replotting after a computation (renormalization).

On the projective chart this is unnecessary. If the new characteristic
impedance is represented by 01 instead of the_center O (Fig. 6) the new VSWR in
decibels is simply the hyperbolic distance <O?W) while the new phase angle is
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the elliptic angle between Ot~ and tine positive direction O~P.

The effect of a change of reference level on reflectance is the same
as that of an ideal transformer. On~ can als~ visualize the tr_=sformer as pro-
ducing a change of the reflectance W into W! and the point W! can be constructed

(Fig. 6) by making

(OP,OW ) = (o’ P,o’i7)

<fit) . ()(jq
(8)

Reflection coefficient of a stratified medium

The ease in changing reference levels on the projective chart leads to
a simple construction for the input reflectance of a lossless stratified medium.

Consider the
teristic impedance Zi
deduce a succession of

succession of media 1,2,..$,i, . . ..n each with a charac-
, a thickness di and a wave number ~. From this we

hyperbolic distances

Ui = 20 10g~~(Zi+~fii) (9)

and a succession of angles

‘i=%.% (lo)

Then we construct a polygon as follows: we rotate OP clockwise about O through
and angle 2~1’ obtaining OPl, we find on Opl the point ~ such that <~’ = U1 ,

we rotate Olpl about 01 clockwise through an elliptic angle 20(2, we find on

01P2 the point 02 such that ~~02> = U2 and so on . The end point is On-l

and the last rotation gives ‘n-l pn~

The transformation of reflectance through the stratified medium is
represented by the projective transformation which leaves the circle invariant
and carries OP onto %.1 Pn . All characteristics of this transformation:
scattering coefficients; fmage parameters, iterative parameters can be read
immediately on this picture. For instance the input reflectance when the last
medium is matched is represented by the end point On-l.

Measurement of reflectance through a lossless junction

The transformation of reflectance from one side of the junction to the
Other is represented on the projective chart by a transformation

T: W+wf (11)

which is projective, leaves r invariant and therefore also the @erbolic distances
and elliptic angles.

Refering to figur@ 8 we m@asure on the input side (1) of the junction
the reflectance which correspond to four positions of a short circuit taken eve~
eighth of a guide wave length so as to produce at the reference plane (2) the
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reflectance A, B,C, D shown on figure 8-b. Measurement at the input gives the
images A~~B~3C?,D~ which lie also on the circle r since the junction is lossless
but are shown on a different figure (8-c) for clarity.

Since the transformation T is projective the image of O is the inter-
section O? of AtC~ and B~D~. This completes the calibration of the junction.

In order to determine an un~own load W placed in line (2) its image
is measured on side (1) of the junction and represented by W! on the projective
chart 8-c . Because of the invariance of the hyperbolic distances {OrWf) = <CM}
is the corrected VSWR in decibels and can be evaluated immediately with the pro-
tractor while <OIA?$O~W$ ) =( OA,OW)is thecorresponding corrected phase angle.

Reflectance measurement through a lossy junction—..

The principle is the same as for the lossless junction : calibration
of the junction by measuring the input reflectance for four equispaced positions

of a short circuit in the output line, then measurement of the unknown load.

The difference in the correction procedure (Fig. 9) is that it is now
simpler to plot the points AI,BI,CI,D! on a Smith chart where they fall on a
circle r!. The Point O? is again the intersection of A!C? and B~Dt but instead
of using
applying

measured

often in
a standard slotted line can be connected to it by means of some junction which,
in general, is not matched on either side, is not symmetrical and is often. 10SSY.
Improving the junction could be a major problem while correcting for its effect
by the usual method would. involve finding an equivalent network w“hich is rather
complicated when losses occur. The present method is Simple and iahost as direct
for lossy junctions as for lossless ones.

directly-the point W1-image of the unknown load we conv&t it to ~by
to W~ the transformation~ as if ~t were the unit circle.

The corrected VSWR and phase angle are (Otfi} and (O~A~,O!fi) both
as if r ! were the unit circle.

These last two applications give the solution to a problem which occurs
practice. For instance, when experimenting with a new microwave guide,

Essential insertion loss of a junction

This concept considel%%dby D. R. Crosby corresponds to the following
problem : given a lossy junction, find the minimum insertion loss which could be
obtained by placing it between two suitable corrective lossless junctions.

Using the tige circle r! obtained in the preceding problem we can
measure its hyperbolic radius x ‘@B]\2 (Fig. 10). Then the minimum insertion
loss y is a simple function of x which can be tabulated

..x/20

“ 10 log
1+10

Y
-@J-

1-10

(12)
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Problems on power.—

Problems which leads to simple graphical solutions on the projective
chart aye those where the representation of hermitian forms introduced in
reference 3 can be used.

Hermitim forms include such physical quantities as power flow in a
transmission line or a polarized plane wave, energy density, voltage or current
squared, power absorbed by a load etc. Each is represented, except for a factor,
by distances between points on a sphere and planes. By the projection of the
sphere on its equatorial plane, which leads to the projective chart, some of these
quantities become distances to straight lines..—

For instance the ratio of the powers picked up by two probes in a
slotted line varies as the ratio of distances from the
the reflectance to the tangents D D (Fig. 11) to the

%2
points which correspond to the pm e positions.

Determination of W or reflectance by three
reduced to the intersection of two straight lines.

Problems on polarization

point 77 representing
unit circle rat the

probes measurement is thus

Most of them can be deduced from s~~r problem in transmission lines,
the polarization ratio taking the place of the reflectance.

Measurement of polarization by comparing the power picked Up by several
antennas of known polarization is like the determination of reflectance from a
few pickup probes . It reduces to the intersection of a number of planes and in

some cases to the intersection of straight lines on the projective chart.

Determination of the polarization of an antenna in the presence of
ground or of some linear transformer of polarization, is similar to the measurement
of reflectance through a junction and can be solved as above.

some problems of interference between rays coming from different direc-
tions also fall essentially in the same category.
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