A NEW CHART FOR THEE SOLUTION OF TRANSMISSION LINE
AND POLARIZATION PROBLEMS

Georges Deschamps
Federal Telecommnication Iaboratories
Nutley, New Jersey

The chart presented in this paper has been described in Ref. 1
where it appeared as an orthographic map of the Poincaré sphere. TIts applica-
tion to transmission lines is believed to be new and since in this respect
important properties derive from projective geometry rather than from the re-
lation to the sphere it is proposed to call it the projective chart.

The relations of this chart to Non-Euclidean geometry and to Rela~-
tivity (Ref. 2 and 3) are interesting and important for understanding its basic
properties but since these theories have a reputation of being difficult the
projective chart will be considered here as a simple modification of the Smith
chart. Fundamental properties will be stated without proof and a selection of
possible applications will be given to show the versatility of this new graph-
ical representation.

An important aid in these applications is a transparent overlay with
convergent lines and graduations, called the hyperbolic protractor which can
be used to measure directly on the chart a special type of distances.

Projective chart

On the Smith chart a reflection coefficient or reflectance w is rep-
presented by a point W Jjust as any complex number is represented on the
Argand diagram, The distance OW to the origin is the magnitude r of the
reflectance and all passive loads are represented by points inside the unit
circle I, If the line OW cuts I"at points I and J (Fig. 1) the ratio

WI _ls+r :
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is the VSWR corresponding to the reflectance w .
The modification which leads to the projective chart is to represent

the reflectance w by the point W with the same phase angle as W but at
a distance T from the origin given by

> (2)

This makes the ratio ﬁi/WJ equal to the square of the VSWR.

If one uses, with the Smith chart, a radial arm carrying a VSWR gradu-
ation in decibels the point W will be in front of the graduation 2% when W
is in front of the graduation x . Plotting points on the projective chart or
transforming back and forth to the Smith chart is therefore very simple,



The transformation @ from W to W can also be obtained by projec-
ting W on a sphere with equator I from one of its pole and then by projecting
orthogonally from the sphere on the plane of [ (Ref. 1-2-3) This justifies the
construction shown on fig., 2 : WM and ON are perpendicular to the radius OW
and MN goes through W. This can also be used to perform the inverse trans-—
formation @™ from W to W.

The circles usually drawn on the Smith chart corresponding to constant
resistance or reactance and to constant magnitude or phase of the impedance be=-
come on the projective chart straight lines and ellipses as shown on figure 3 ,
These could be drawn in advance and used as on the Smith chart to plot impedance
measurements taken for instance with a bridge.

Distances and angles on the projective chart

Special notions of distance and angle can be introduced on the projec-
tive chart which have useful interpretations.

Given two points A,B andtheintersections 1I,J of AB with U (fig. L)
the quantity :

(A (3)

will be noted by {AR) and called the hyperbolic distance between A and B. It
will usually be expressed in decibels as in (3) but can be converted to nepers
by substituting % log, for 10 logype

The quantity (3) deserves the name of "distance" because it satisfies
the triangular inequality (which shows that straight lines are geodesics for this
particular metric) and because it is additive : if three points A,B,C are on a
straight line, in this order T

(ABy +  (BO) ; (acH (L)

The hyperbolic distance between the point W and the center of the
chart is :

14+ l+1r

(W} = 10 log 75 =20 log T (5)

and can be interpreted as the VSWR expressed in decibels,

The expression (3) for the hyperbolic distance does not have to be used
in evaluating {AB) . A scale formed of diverging lines can be traced once for
all on a transparent base forming an hyperbolic protractor which is used as fol-
lows : the protractor is placed on the chart so that the sides 0X, OY of the right
angle go through the points I and J (fig. L) (This is possible in many ways but
does not affect the result). The numbers read on the radial lines through A and
B respectively are added if A and B are on opposite sides of the radial line
marked O, substracted otherwise. This result divided by 2 is the distance

{AB) . On figure li for instance (AB) equals (12 + 4)/2 or 8 decibels.,



The special type of angle which goes with the hyperbolic metric will
be called elliptic. The elliptic angle between the lines WE and WF is noted
by {WE,WFy and can be obtained (Fig. 5) by the following construction : find
the point W (if this has not been done) then draw WE and WF produced to their
intersections E' and F' with [ . The elliptic angle is equal to the ordinary
angle (OE',0F'). A special elliptic protractor could also be designed to per-
form this evaluation directly.

Corresponding notions of distance and angle could be introduced directly
on the Smith chart: the geodesics are circles orthogonal to I” , the angle between
two of them is represented by the true angle between their tangents at a point of
intersection and the "distancen" CAéI between two points A and B is most conveniently
defined and evaluated by saying that it should be equal to (AB) where A and B
are the images of A and B by the transformation @ .

Representation of linear transformers

A transformation which occurs very often because it expresses the effect
of a linear transformer on impedance, reflectance or polarization ratio is

aw + b

w! = (6)

cw + d

where a,b,c,d are complex numbers and w 1is the quantity which is transformed
into wit,

This so called bilinear transformation is represented on the Smith
chart by a circular transformation i.e. one which transforms circles into circles
and is conformal (preserves angles). It follows that hyperbolic distances are
also preserved in the following sense: if A,B are transformed into A',RB' while

" becomes ', the distance [AB] defined above is equal to the distance [A'B1]
measured as if [ ' were the unit circle

(ag). = [aBd, (7)

the subscript indicating with respect to what circle the "distance" is measured.

The special transformations (6) which preserve the unit circle (lossless
transformations of reflectance for instance) are represented on the projective
chart by projective transformations., They transform straight lines into straight
lines and as a consequence also leave the hyperbolic distances and elliptic angles
invariant. The first applications are based on this property.

Change of reference level, Ideal transformer

When impedances are plotted on the Smith chart to convert them into
reflectances, they must first be divided by the characteristic impedance of the
transmission line to which they will be connected. A change in this characteris-
tic impedance level usually means replotting after a computation (renormalization).

On the projective chart this is unecessary. If the new characteristic

impedance is represented by O0' instead of the center O (Fig. 6) the new VSWR in
decibels is simply the hyperbolic distance (b'w} while the new phase angle is

7



the elliptic angle between O'W and the positive direction O'P.

The effect of a change of reference level on reflectances is the same
as that of an ideal transformer. One can also visualize the transformer as pro-
ducing a change of the reflectance W into W' and the point W' can be constructed
(Fig. 6) by making

(oP,0Wt) = {0'P,0'W)

G - (o ®

Reflection coefficient of a stratified medium

The ease in changing reference levels on the projective chart leads to
a simple construction for the input reflectance of a lossless stratified medium,

Consider the succession of media 1,2,...,i,...,n each with a charac-
teristic impedance Z; , a thickness dj and a wave number k;. From this we
deduce a succession of hyperbolic distances

ui = 20 logy5(23+1/71) (9

and a succession of angles

Hy = ky dg (10)
Then we construct a polygon as follows: we rotate OP clockwise about O through
and angle 2« 1’ obtaining OP;, we find on OP; the point 0, such that (OOI) =y

we rotate 0yP1 about O3 clockwise through an elliptic angle 20( s we find on
01P2 the point O2 such that {010é> =u, and so on . The end p01nt is Oy 5

and the last rotation gives Oy, -1 Pne

The transformation of reflectance through the stratified medium is
represented by the projective transformation which leaves the circle invariant
and carries OP onto On-l P, « All characteristics of this transformation:
scattering coefficients; imaye paraneters, iterative parameters can be read
immediately on this picture. For instance the input reflectance when the last
medium is matched is represented by the end point 0, 5.

Measurement of reflectance through a lossless junction

The transformation of reflectance from one side of the junction to the
other is reprcsented on the projective chart by a transformation

T : W=pWr (11)

which is projective, leaves " invariant and therefore also the hyperbolic distances
and elliptic angles.

Refering to figure 8 we measure on the input side (1) of the junction
the reflectances which correspond to four positions of a short circuit taken every
eighth of a guide wave length so as to produce at the reference plane (2) the



reflectances A,B,C,D shown on figure 8~b, Measurement at the input gives the
images A',B',C',D! which lie also on the circle [ since the junction is lossless
but are shown on a different figure (8-c) for clarity.

Since the transformation T is projective the image of 0O is the inter-
section Ot of A'C' and B'D', This completes the calibration of the junction.

In order to determine an unknown load W placed in line (2) its image
is measured on side (1) of the junction and represented by W' on the projective
chart 8-c . Because of the invariance of the hyperbolic distances {O'W') = {OW)
is the corrected VSWR in decibels and can be evaluated immediately with the pro-
tractor while <O'A',O'w1) = (OA,0W) is the corresponding corrected phase angle.

Reflectance measurement through a lossy Jjunetion

The principle is the same as for the lossless junction : calibration
of the junction by measuring the input reflectance for four equispaced positions
of a short circuit in the output line, then measurement of the unknown load.

The difference in the correction procedure (Fig., 9) is that it is now
simpler to plot the points A',B',C!',D!' on a Smith chart where they fall on a
circle [*t'. The point Of is again the intersection of A'C! and B'D' but instead
of using directly the point W' image of the unknown load we convert it to W by
applying to Wt the transformation @ as if [~ ' were the unit circle,

The corrected VSWR and phase angle are {O'W) and (O'A',O'W> both
measured as if © ' were the unit circle,

These last two applications give the solution to a problem which occurs
often in practice. For instance, when experimenting with a new microwave guide,
a standard slotted line can be connected to it by means of some junction which,
in general, is not matched on either side, is not symmetrical and is often lossy.
Improving the junction could be a major problem while correcting for its effect
by the usual method would involve finding an equivalent network which is rather
complicated when losses occur., The present method is simple and almost as direct
for lossy junctions as for lossless ones,

Essential insertion loss of a junction

This concept considered by D. R. Crosby corresponds to the following
problem : given a lossy junction, find the minimum insertion loss which could be
obtained by placing it between two suitable corrective lossless Junctions.

Using the image circle ' obtained in the preceding problem we can
measure its hyperbolic radius x =|}Eﬂ/? (Fig. 10). Then the minimum insertion
loss y is a simple function of x which can be tabulated

1 0_x/20

1l +
%750
1-10%

y = 10 log (12)



Problems on power

Problems which leads to simple graphical solutions on the projective
chart are those where the representation of hermitian forms introduced in
reference 3 can be used.

Hermitian forms include such physical quantities as power flow in a
transmission line or a polarized plane wave, energy density, voltage or current
squared, power absorbed by a load etc. Each is represented, except for a factor,
by distances between points on a sphere and planes., By the projection of the
sphere on its equatorial plane, which leads to the projective chart, some of these
quantities become distances to straight lines.

For instance the ratio of the powers picked up by two probes in a
slotted line varies as the ratio of distances from the point W representing
the reflectance to the tangents D D2 (Fig. 11) to the unit circle " at the
points which correspond to the probe positions.

Determination of W or reflectance by three probes measurement is thus
reduced to the intersection of two straight lines.

Problems on polarization

Most of them can be deduced from similar problems in transmission lines,
the polarization ratio taking the place of the reflectance.

Measurement of polarization by comparing the power picked up by several
antennas of known polarization is like the determination of reflectance from a
few pickup proves . It reduces to the intersection of a number of planes and in
some cases to the intersection of straight lines on the projective chart.

Determination of the polarization of an antenna in the presence of
ground or of some linear transformer of polarization, is similar to the measurement
of reflectance through a junction and can be solved as above.

Some problems of interference between rays coming from different direc-
tions also fall essentially in the same category.
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Fige. 1
Relation between the representations of a ~(
reflection coefficient (or a polarization T?;siormations & and s :Construction
ratio) on the Smith Chart (W) and on the of W irom W or of W from W.
vrojective chart (W).
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Loci on the projective chart and on the Smith chart of constant re-
sistance R, reactance X, impedance Magnitude | Z| and impedance phaze Z.
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Definition and evaluation of the hyperbolic distance {AB).
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Cvaluation of the elliptic angle (W E, W FY). 6
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Change of reference level - Ideal transformer.
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Reflectance measurement through a lossless Junction,

Fig. 7
Transformation of reflectance
through a stratified medium.

Fig. 9
Reflectance measurement
through a lossy junction.
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Fig. 11
Locus of W for a given ratio of powers picked
up by two probes in a slotted line.

Fig. 10
Evaluation of the essential insertion loss.

13



